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Figure 3: Interoperability system for conversion of spectral envelope representations 
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Figure 1: Example of trajectory in the database, involving interpolation and extrapolation of 
pitch and dynamics, as well as morphing (interpolation between instruments)
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Figure 6.13: A possible pedagogical use of mapping strategies.

A beginner could make use of the simpler mapping in order to concentrate on fingering, for instance. In
this case the performance of the ESCHER instrument would be similar to playing a recorder.
Another user could like to concentrate on another aspect of the instrument’s behavior and then the
mapping layer could be adapted according to this direction. For instance, the removal of the timbral
variation with the embouchure in order to concentrate on the correct embouchure, but keeping the virtual
flow effect.
An expert player, on the other hand, would benefit from the complex mapping since it reproduces the
behavior of the acoustic instrument.

6.4 Conclusions
This chapter presented ESCHER, a prototyping system for human-computer interaction in the context
of musical performance using IRCAM’s jMax real-time processing environment. The system allows the
definition of sound synthesis control algorithms providing instrument-like behavior in a modular way.
ESCHER was designed to provide an intuitive control of sound synthesis in real-time. A strong accent
is given to an easy modeling of the relation between a particular human action and the produced sound
permitting an easy adaption to a potentially wide range of different controllers and/or different sound
synthesis methods.
A practical example on the simulation of an acoustic single reed instrument was presented, where vari-
ous mapping strategies were used to experiment with the instrument’s response to performer actions. A
detailed description of this implementation and comments on its use and on pedagogical outcomes have
also been discussed.

Figure 2: Mapping strategy, involving an abstract parameter layer (left). The first mapping 
stage (right) simulates coupling between physical parameters (Wanderley et al., 1998)

The combination of heavily computational synthesis techniques (e.g. additive 
synthesis) with gestural control devices in performance situation offers the 
sound quality of offline applications together with the control quality of real time 
applications. It however requires to consider synthesis from the control view-
point, in terms of design and implementation. The Ssynth additive synthesizer 
includes flexible control of additive and source-filter models of sound.  

Ssynth implements:
  - 3-order phase polynomial model (McAulay and Quatieri, 1986),  
  - interpolating/extrapolating data from the database, and morphing, 
  - synthesizing polyphonic sounds,
  - handling OSC messages (Wright, 1997) to carry control information,
  - implemented in C, can be compiled as a stand alone program or as a Pd 
object, using the Pd scheduler for output audio.

The sound parameters database:
  - McGill master samples database (Opolko and Wapnick, 1987),
  - additive analysis using standard techniques implemented in Additive,
  - fundamental frequency estimation using HMM (Doval and Rodet, 1993), 
  - frames organized as a 3-dimensional mesh as in (Haken, Tellman and Wolfe, 
1998) according to pitch, dynamics and instrument,
  - instruments: clarinet, oboe, trumpet and saxophone,
  - spectral envelope models.

Modular mapping structure to provide a gestural control (see Figure 2):
  - 1st part:  Pd patches converting the transducer data into abstract parameters 
by rendering the acoustical couplings that exist between lip pressure, air pres-
sure and fingerings, in order to provide fundamental frequency, intensity and 
dynamics (Wanderley, Schnell and Rovan, 1998).
  - 2nd part: additive synthesizer with abstract parameters and spectral enve-
lope parameters input. An internal mapping layer converts the abstract param-
eters into additive parameters (partials frequencies and amplitudes) by 
interpolating/extrapolating the database. 

Controlling additive synthesis
The gestural control of additive synthesis from sound parameters database re-
quires morphing (Depalle, Garcia and Rodet, 1995; Haken, Tellman and Wolfe, 
1998) to infer new sounds, since not all sounds exist in the database, in terms 
of fundamental frequency, intensity and dynamics. Specific morphing strategies 
are derived from (Tellman, Haken and Holloway, 1995). 

Controlling the spectral envelope
The spectral envelope is a function of frequency.  It simplifies the amplitude 
control of partials in Ssynth, and its modification is useful to morph sounds. 
Gestural control of the spectral envelope may require conversions from one 
model into another, more suited to provide a spectral envelope corresponding 
to a stable filter for a given control. Fig. 3 depicts the implemented conversions. 
Indirect conversions are then derived by combination of basic conversions.

To conclude
In the context of gestural control of additive synthesis for interpolating and ex-
trapolating instrumental notes, our contribution lies in the systematic design of 
the synthesis environment for allowing flexible control. This implies a potential 
control of the additive part by spectral envelopes, parameterized in various 
forms. 
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This research project concerns the simulation of interpretation in live performance using digital instruments. It addresses mapping strate-
gies between gestural controls and synthesizer parameters. It requires the design and development of a real time additive synthesizer 
with flexible control, allowing for morphing, interpolating and extrapolating instrumental notes from a sound parameters database. We 
present the synthesizer, its additive and spectral envelope control  units, and the morphing they allow for.


